

Informationsmaterial über den Schwerpunkt Schienenfahrzeugtechnik

für das Bachelor-/Masterstudium

Wirtschaftsingenieurwesen der Fachrichtung Maschinenbau

Inhaltsverzeichnis

1		schinenbau für den Schwerpunkt Schienenfahrzeugtechnik5
	1.1	Aufbau Bachelor-/Masterstudiengang Wirtschaftsingenieurwesen Fachrichtung Maschinenbau
2		rtschaftsingenieurwesen Fachrichtung Maschinenbau: Studienplan des ergreifenden Pflichtbereichs7
		Bachelorstudiengang Wirtschaftsingenieurwesen Fachrichtung Maschinenbau: Studienplan des Pflichtbereichs Berufsfeld: Verkehrstechnik – Vertiefung Fahrzeugtechnik
		"Verkehrstechnik Vertiefung – Fahrzeugtechnik"10
3		sterstudiengang Wirtschaftsingenieurwesen Fachrichtung Maschinenbau mit dem hwerpunkt Schienenfahrzeugtechnik11
	3.1	Studienplan zum Masterstudiengang Wirtschaftsingenieurwesen Fachrichtung Maschinenbau Vertiefungsrichtung: Fahrzeugtechnik und Transport -
	3.2	Schienenfahrzeugtechnik
	3.5	Übersicht über die ingenieurwissenschaftlichen Module des Wahlpflichtbereiches zum
		Masterstudiengang Wirtschaftsingenieurwesen Fachrichtung Maschinenbau:
		Fahrzeugtechnik und Transport15
4	Ins	titutspräsentation17
		Wer und was ist das IFS?
		Forschungsschwerpunkte des IFS
		Direkt nachgefragt!
		Kontaktadressen
	4.5	Anfahrtsbeschreibung zum IFS 21

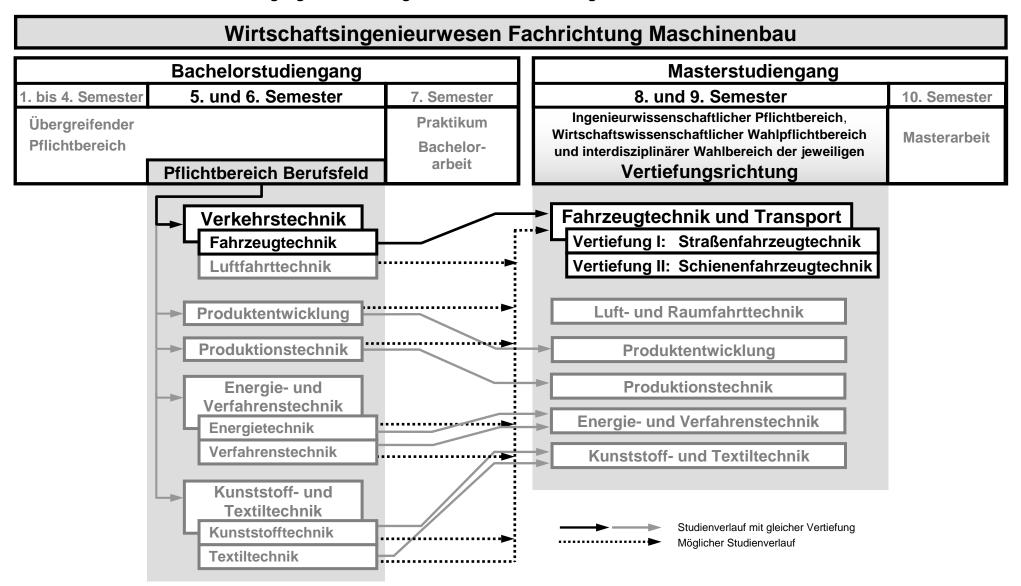
Einführung in das Bachelor-/Masterstudium Wirtschaftsingenieurwesen – Fachrichtung Maschinenbau für den Schwerpunkt Schienenfahrzeugtechnik

Das Bachelorstudium an der RWTH Aachen umfasst sieben Fachsemester und ist in vier Bereiche unterteilt: Einen ingenieurwissenschaftlichen Bereich, einen mathematischen, einen system- und gesellschaftswissenschaftlichen Bereich, deren Module im Studienverlaufsplan vorgegeben sind, sowie den Bereich Berufsfeld. Im 5. und 6. Semester können die Studierenden zwischen fünf berufsfeldbezogenen Pflichtbereichen wählen, in denen ein Überblick und erste grundlegende fachspezifische Themen vermittelt werden. Die Schienenfahrzeugtechnik, als einer der grundlegenden Bereiche der Verkehrstechnik, wird im Berufsfeld "Verkehrstechnik - Vertiefung Fahrzeugtechnik" im Pflichtmodul "Grundlagen der Schienenfahrzeugtechnik" angeboten. Dieses Modul kann auch als Wahlpflichtmodul in jedem anderen Berufsfeld gewählt werden, auch wenn sie nicht im empfohlenen Wahlpflichtbereich des jeweiligen Berufsfeldes aufgeführt sind. Die Pflichtund Wahlpflichtmodule des gewählten Berufsfeldes sind die empfohlene Voraussetzung für die Wahl des entsprechenden Masterstudiengangs.

Aufbauend auf dem Bachelorstudiengang Maschinenbau mit dem Berufsfeld "Verkehrstechnik - Vertiefung Fahrzeugtechnik", bietet der drei Semester umfassende Masterstudiengang "Fahrzeugtechnik und Transport" an der RWTH die eigentliche Spezialisierungsmöglichkeit auf eine der Vertiefungsrichtungen Schienenfahrzeugtechnik oder Straßenfahrzeugtechnik. Es besteht aber auch die Möglichkeit nach Wahl eines anderen Berufsfelds im Bachelorstudiengang, z.B. der Konstruktionstechnik, anschließend den Masterstudiengang "Fahrzeugtechnik und Transport" zu belegen.

Innerhalb dieses Informationsheftes werden Ihnen zum einen die detaillierten Studienpläne, sowie die Inhalte der für die Schienenfahrzeugtechnik spezifischen Vorlesungen vorgestellt. Zum anderen geben wir Ihnen einen Einblick in die Arbeit unseres Institutes. Sie erfahren mehr über unsere allgemeinen Kompetenzen und aktuelle Forschungsprojekte.

Es gibt mehrere Aspekte sich für das "Institut für Schienenfahrzeuge und Transportsysteme" zu entscheiden. Einerseits befassen wir uns intensiv mit den Zukunftsthemen Mobilität und Verkehr, andererseits bieten wir im Gegensatz zu Massenveranstaltungen eine intensive, persönliche Betreuung in den Bereichen Vorlesung und Übung, sowie Projekt-, Bachelor- und Masterarbeit. Abschließend in dieser Broschüre finden Sie Aussagen, warum sich bereits andere Studierende für ein Studium der Schienenfahrzeugtechnik entschieden haben.


Ein erfolgreiches Studium wünscht Ihnen der Inhaber des Lehrstuhls und Leiter des Instituts für Schienenfahrzeuge und Transportsysteme

Univ.-Prof. Dr.-Ing. Christian Schindler

Aktuelle Informationen finden Sie unter: www.ifs.rwth-aachen.de

1.1 Aufbau Bachelor-/Masterstudiengang Wirtschaftsingenieurwesen Fachrichtung Maschinenbau

2 Wirtschaftsingenieurwesen Fachrichtung Maschinenbau: Studienplan des übergreifenden Pflichtbereichs

Übergreifender Pflichtbe	reich					
Dozenten	Modul	СР	V	Ü/L	Σ	S/W
	Natur- und Ingenieurwissenschaftlic	he Grun	dlagen	-		
Rauhut / Tempone / Guo	Mathematik I	7	3	2	5	W
Rauhut / Tempone / Guo	Mathematik II Mathematik III	7 7	3	2 2	5 5	s w
Wuttig / Schael	Physik	4	2	1	3	W
Schmitt	Qualitäts- und Projektmanagement	2	1	1	2	S
Schröder	Mechanik I	7	2	2	4	w
Schröder	Mechanik II	7	2	2	4	S
Schröder	Mechanik III	8	3	2	5	w
Jupke	Thermodynamik I	6	2	2	4	S
Jupke	Thermodynamik II	3	1	1	2	W
Jacobs	Maschinengestaltung I	3	1	2	3	S
Jacobs	CAD-Einführung	1	0	1	1	S
Corves / Hüsing	Maschinengestaltung II	5,5	2	2	4	w
Jacobs	Maschinengestaltung III	5,5	2	2	4	S
Abel	Regelungstechnik	7	3	2	5	W
Broeckmann	Werkstoffkunde I	6	3	2	5	W
Hopmann / Broeckmann	Werkstoffkunde II	4	2	1	3	S
Nitsch Einführung in die Arbeitswissenschaft		4	2	1	3	s
	Integrationsbereich					
Trimpe	Informatik im Maschinenbau	5	2	3	5	s
Cramer	Statistik	5	3	1	4	S
	Wirtschaftswissenschaftliche G	rundlag	en			
von Nitzsch	Entscheidungslehre	5	2	2	4	w
Letmathe	Buchführung und internes Rechnungswesen	6	2	3	5	w
Brettel	Einführung in die BWL	4	2	1	3	s
Walther	Produktion und Logistik	5	2	2	4	w
Lontzek	VWL: Einführung	5	2	2	4	w
Kittsteiner	VWL: Märkte und strategisches Entscheiden	5	2	2	4	s
Wentzel	Absatz und Beschaffung	5	2	2	4	S
Lübbecke	Quantitative Methoden der Wirtschaftswissenschaften	5	2	2	4	S
Balleer	Einführung in die empirische	5	2	2	4	w
Prouer	Wirtschaftsforschung	F	2	2	1	,
Breuer	Investition und Finanzierung Personal und Organisation für	5	2	2	4	W
Breuer / Nadler Wirtschaftsingenieure		5	2	2	4	s
	Maschinenbau Wahlpflichtfach (5CP)					
Taubuade						
Terbrack	Grundzüge des Privatrechts oder	5	2	2	4	S
Salge / Antons	Strategisches Management	5	2	1	3	S

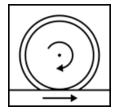
	Berufsfeld									
Berufsfeldbezogenes Modul 16										
	Praktikum									
	Praktikum	14	20 W. inkl. 6 Wo. Vorprakt.	W						
	Bachelorarbeit									
	Bachelorarbeit	15	10 Wochen	W						
		210								

Legende: $CP = Credit Points V = Vorlesung Ü/L = Übung/Labor <math>\Sigma = Summe Semesterwochenstunden S/W = Sommer/Winter In Anlehnung an Quelle: (24.03.2023) https://www.maschinenbau.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabgazsog$

2.1 Bachelorstudiengang Wirtschaftsingenieurwesen Fachrichtung Maschinenbau: Studienplan des Pflichtbereichs Berufsfeld: Verkehrstechnik – Vertiefung Fahrzeugtechnik

	Modul		Dozent		5. S	emester		6. Semester			
			DOZCIR	٧	Ü/L	∑sws	СР	٧	Ü/L	∑sws	СР
† ë	Fahrzeugtechnik I – Längsdynamik	ika	Eckstein	2	2	4	6				
Pflicht bereich	Grundlagen der Schienenfahrzeugtechnik	IFS	Schindler					2	2	4	6
	Wahlpflichtfach						4				0
			Summe				10				6

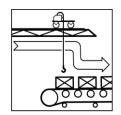
	Grundlagen der Fördertechnik	IFS	Schindler					1	1	2	3
dule	Fügetechnik I – Grundlagen (1.Hälfte)	ISF	Reisgen					1	1	2	3
lene	Konstruktionslehre I	MSE	Jacobs	2	3	5	6				
foh	Machine Dynamics of Rigid Systems	IGMR	Corves					2	2	4	6
m pfi	Messtechnik und Qualität	WZL	Schmitt	2	2	4	4				
Vahl	Methoden der Zukunftsforschung I	LTVS	Lauster	2	0	2	3				
	Methoden der Zukunftsforschung II	LTVS	Lauster					2	0	2	3


Legende: CP = Credit Points V = Vorlesung Ü/L = Übung/Labor ∑SWS = Summe Semesterwochenstunden * = Belegung im WS ** = Belegung im SS **In Anlehnung an Quelle:** (24.03.2023) https://www.maschinenbau.rwth-aachen.de/global/show_document.asp?id=aaaaaaaabgazsog

2.2 Beschreibungen der vom IFS angebotenen Bachelorveranstaltungen im Berufsfeld "Verkehrstechnik Vertiefung – Fahrzeugtechnik"

Grundlagen der Schienenfahrzeugtechnik

Im Überblicksteil der Vorlesung "Grundlagen der Schienenfahrzeugtechnik" lernt der/die Studierende zunächst das System Schienenverkehr nach unterschiedlichen Gesichtspunkten einzuordnen. Insbesondere werden die Vor- und Nachteile im Vergleich mit dem Kraftfahrzeugverkehr herausgestellt, sowie Möglichkeiten zur Lösung unserer heutigen gesellschaftlichen Herausforderungen mittels Schienenverkehr gezeigt. Weiterhin wird kurz die Schienenverkehrsbranche vorgestellt, die sich grob in Hersteller und Betreiber gliedert.


Es folgt eine Präsentation der verschiedenen Schienenverkehrssysteme mit ihren Einsatzbedingungen und ausgewählten dafür spezialisierten Fahrzeugkategorien.

Im Weiteren wird herausgearbeitet welche Randbedingungen dazu führen, dass Schienenfahrzeuge so aussehen wie sie heute aussehen und auf welche Art sie konfiguriert werden können. Es folgt eine Vorstellung von Repräsentanten der wichtigsten Fahrzeugkategorien und ihrer Merkmale, getrennt nach Nah- und Fernverkehr.

Der ingenieurwissenschaftlich-technische Teil der Vorlesung behandelt im Wesentlichen die Fahrzeuglängsdynamik. Nach der ausführlichen Herleitung der wichtigsten Fahrwiderstände, erfolgt die Fahrleistungsermittlung und ihre Realisierung über den Antriebsstrang. Dabei wird weniger auf die eingesetzten Elektro- und Verbrennungsmotoren eingegangen, wozu es im selben Berufsfeld eigene Vorlesungen gibt, sondern der Fokus auf die Kennungswandlung gelegt. Die Vorlesung endet mit einer Einführung in Bremssysteme von Schienenfahrzeugen und deren Auslegung.

Grundlagen der Fördertechnik

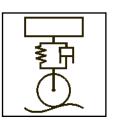
Das Modul "Grundlagen der Fördertechnik", vom Umfang mit SWS 1/1 und 3CP ausgelegt, wird am Anfang des Semesters nur über 7 Wochen als SWS 2/2 angeboten. Den Studierenden wird in diesem Modul ein kompakter und kurzweiliger Einstieg in das wichtige und vielfältige Gebiet der Fördertechnik angeboten, das mit einem Überblick und Gliederung der Fördermittel startet. Nach einem kleinen Einblick in die theoretische Betrachtung des Materialflusses wird auf den einfachen

Transportknoten näher eingegangen. Der Kran, insbesondere das Hubwerk mit seinem Antrieb, und das Drahtseil, als typisches Element der Fördermittel, werden im Bereich Unstetigförderer detaillierter behandelt. Nach der Einteilung des Fördergutes mit seinen verschiedenen Eigenschaften wird im Bereich Stetigförderer der Bandförderer hinsichtlich Aufbau und Kräfte betrachtet. In der Vorlesung Lagertechnik werden die verschiedenen Lagertypen und einige wichtige Kenngrößen dem Studierenden vorgestellt. In den Übungen werden entsprechend den Inhalten der Vorlesungen Fragen beantwortet, Übungsaufgaben vorgerechnet und Herleitungen erörtert.

- 3 Masterstudiengang Wirtschaftsingenieurwesen Fachrichtung Maschinenbau mit dem Schwerpunkt Schienenfahrzeugtechnik
- 3.1 Studienplan zum Masterstudiengang Wirtschaftsingenieurwesen Fachrichtung Maschinenbau Vertiefungsrichtung: Fahrzeugtechnik und Transport Schienenfahrzeugtechnik

	Modul	Institut	nstitut Dozent	8. Semester			9. Semester				10. Semester				
-	Wodu	mstitut	Institut Dozent		Ü/L	Σ	CP	٧	Ü/L	Σ	CP	٧	Ü/L	Σ	СР
Pflichtbereich Schienen- Fahrzeugtechnik	Angewandte Schienenfahrzeugtechnik -Systeme und Komponenten des Schienenfahrzeuges -Labor Schienenfahrzeugtechnik	IFS	Schindler					2	2	4	6				
	Produktentwicklung im Schienenfahrzeug	IFS	Schindler					2	1	3	4				
Ш	Verkehrswirtschaft II	VIA	Nießen	4	0	4	8								
	Ingenieurwissenschaftlicher Wahlpflichtbereich s. Kap. 3.5			12 CP						Σ 42 CP					
	Wirtschaftswissenschaftlicher Wahlpflichtbe	Wirtschaftswissenschaftlicher Wahlpflichtbereich s. Quelle			30 CP					24	-2 GF				
	Masterarbeit											22	Woch	en	30
·			Summe				27-33				27-33				30

Legende: CP = Credit Points V = Vorlesung \ddot{U}/L = \ddot{U} bung/Labor Σ = Summe Semesterwochenstunden In Anlehnung an Quelle: (24.03.2023) https://www.maschinenbau.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaablhhyav



3.2 Beschreibung der vom IFS angebotenen fachrichtungsbezogenen Masterveranstaltungen in der "Vertiefungsrichtung II – Schienenfahrzeugtechnik"

Schwingungsdynamik von Schienenfahrzeugen

Schwingungsverhalten des Fahrzeugs vorgestellt.

In dieser Vorlesung wird die Theorie der linearen Schwingungstechnik zur Beschreibung der vertikalen und, ganz kurz, die der longitudinalen Fahrzeugbewegungen erläutert. Es werden Methoden zur Erstellung mechanischer Ersatzmodelle vorgestellt und dann am einfachen Einmassenschwingermodell die für die Fahrzeugschwingungstechnik relevanten Übertragungsfunktionen hergeleitet und diskutiert. Es werden Methoden zur Darstellung von Störungen durch Gleis-unebenheiten und zur Untersuchung ihres Einflusses auf

vertikale

das

Anhand der beschriebenen Schwingungen werden Bewertungsverfahren aufgezeigt, mit deren Hilfe der Schwingkomfort von Schienenfahrzeugen, die Sicherheit (dynamische Radaufstandskraft) sowie die Gleisbeanspruchung bestimmt und bewertet werden können. Mit diesem Wissen wird auf das realitätsnähere Zweimassenschwingermodell übergegangen und der Konflikt zwischen der

Anschließend werden semiaktive und aktive Federungen sowie nichtlineare Kennungen angesprochen und zum Schluss noch der Zug als longitudinale Schwingungskette diskutiert. Übungen zu den einzelnen Themen vertiefen das Verständnis des Stoffes.

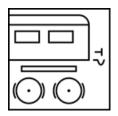
Fahrwerkauslegung auf optimalen Fahrkomfort und auf optimale Fahrsicherheit erläutert.

Spurführungstechnik

Die Spurführung stellt das wichtigste Unterscheidungsmerkmal zwischen Straßenund Schienenfahrzeugen dar. Die Kinematik und die Dynamik der Führung des Radsatzes im Gleis und ganzer Fahrzeuge in der Geraden und im Gleisbogen haben große Bedeutung für das gesamte Fahrverhalten. Der Spurführungsdynamik wird auf der ganzen Welt größte Aufmerksamkeit geschenkt, denn hier liegt die Grenze für wirtschaftliches und sicheres Fahren. Es

werden lineare und nichtlineare Verfahren zur Beschreibung des horizontalen Fahrverhaltens behandelt.

Das Modul "Angewandte Schienenfahrzeugtechnik" beinhaltet zwei Teile, wie die Bremsausrüstung, der Fahrzeugübergang inkl. Zug-/Stoßeinrichtung, der Führerstand sowie die Türen und Fenster. Abschließend folgt noch ein Überblick über das Interieur.



Angewandte Schienenfahrzeugtechnik

Das Modul "Angewandte Schienenfahrzeugtechnik" beinhaltet zwei Teile.

Teil 1: Systeme und Komponenten Systeme des Schienenfahrzeugs

Diese Veranstaltung beschäftigt sich mit der konstruktiven Ausführung und Funktion der wichtigsten Subsysteme und Komponenten von Schienenfahrzeugen mit Schwerpunkt Personenfahrzeugen. Ausgehend vom größten Subsystem, dem Wagenkasten, für den es unterschiedliche Bauweisen gibt, beschäftigt sich ein

großer Teil der Vorlesungsreihe mit dem Fahrwerk, dem technisch anspruchsvollsten Subsystem. Es werden verschiedene Fahrwerksausführungen aus spurführungs- und antriebstechnischer Sicht vorgestellt und diskutiert. Anschließend werden wichtige Fahrwerksbaugruppen und -komponenten, wie der Rahmen, die Federungen, die Radsatzführung, die Antriebsanbindung und die Anbindung zum Wagenkasten vorgestellt, bis schließlich der Radsatz und das Losradpaar diskutiert werden. Es folgen weitere wichtige Subsysteme und Komponenten wie die Bremsausrüstung, der Fahrzeugübergang inkl. Zug-/Stoßeinrichtung, der Führerstand sowie die Türen und Fenster. Abschließend folgt noch ein Überblick über das Interieur.

Teil 2: Labor Schienenfahrzeugtechnik

Durch den praxisbezogenen theoretischen Vorlesungsstoff in Teil 1: "Systeme und Komponenten des Schienenfahrzeugs" wird mit Teil 2: "Labor Schienenfahrzeugtechnik" die wichtige Verbindung von Theorie und Praxis durch Bearbeitung von Messaufgaben vom Einfachen bis zum in der Industrie üblichen Standard geschaffen. Hierzu gehört die aktive Einbindung z.B. in den Aufbau von

Messketten und in die Durchführung und Auswertung von Messungen. Als Grundlage dienen neu zu erstellende Versuchsaufbauten und innerhalb der Forschung und Drittmittelaufträgen vorhandene Versuchsaufbauten. Notwendige Voraussetzung für den Besuch des Labors sind die Kenntnisse aus den Modul "Grundlagen der Schienenfahrzeugtechnik" Sollten Kenntnisse aus den Modulen "Schwingungsdynamik in der Schienenfahrzeugtechnik" und "Spurführungstechnik" fehlen, erfolgt je nach Messaufbau z.B. Komfortmessung oder Gleislagemessung eine geeignete Einführung.

Studierende bei der Zugkraftmessung

Studierende bei Messdatenaufnahme in der Versuchshalle des IFS

Nachfolgend wird eine kurze Beschreibung der Module zum Themenbereich Schienenfahrzeugtechnik im übergreifenden Wahlpflichtbereich des Masterstudiengangs "Fahrzeugtechnik und Transport", die vom IFS angeboten werden, gegeben. In der Übersicht Abschnitt 3.5 ist der komplette Wahlpflichtkatalog aufgeführt.

Produktentwicklung im Schienenfahrzeugbau

Zunächst werden die Besonderheiten des Produkts Schienenfahrzeug als Investitionsgut im Gegensatz zum Konsumgut Kraftfahrzeug herausgearbeitet. Dann folgt ein Überblick über den Üblichen Produktentstehungsprozess in der Schienenfahrzeugbranche. Dabei wird häufig der Bezug zu gängigen Produktentwicklungsmethoden, wie denen nach VDI-Richtlinie 2206 und 2221

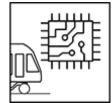
hergestellt und auf deren wichtigste Inhalte mit Bezug auf das Produkt Schienenfahrzeug eingegangen.

Im weiteren Verlauf werden die Grundlagen des Projektmanagements im Schienenfahrzeugbau sowie Maßnahmen zur Effizienzsteigerung im Engineering und zur Risikoabsicherung präsentiert.

Strukturintegrität von Schienenfahrzeugen

Dozenten: Dr. Burkhard Arras, Siemens Mobility GmbH und Dr. Alois Starlinger, Stadler Rheintal AG

Die Sicherstellung der Festigkeit der tragenden Bauteile eines Schienenfahrzeugs ist eine der wichtigsten Aufgaben bei der Entwicklung dieser Produkte. Insbesondere die Marktanforderung, dass die tragenden Strukturen mindestens 30 Jahre lang ohne nennenswerten Ausfall ihren Dienst tun müssen, stellt hohe Anforderungen an Radsätze, Fahrwerkrahmen und Wagenkasten. Erstere müssen



in jedem Fall "safe life" ausgelegt werden, da keine Rückfallebene existiert. Der Wagenkasten muss zusätzlich zur Auslegung gegen seltene sehr hohe Lasten und permanent auftretende Ermüdungslasten auch noch kollisionssicher ausgelegt werden.

Diese Veranstaltung konzentriert sich zunächst auf die festigkeits- und kollisionssicherheitsgerechte Auslegung des Wagenkastens und die entsprechende Nachweisprozedur.

Digitalisierung in der Schienenfahrzeugtechnik

Die Lehrveranstaltung "Digitalisierung in der Schienenfahrzeugtechnik" beschäftigt sich mit aktuellen Trends, Herausforderungen und Perspektiven der Digitalisierung der Bahn.

Sie besteht aus Vorlesungen, Gastvorträgen von führenden Industrieexperten sowie Seminaren, in denen die Studierenden ihre Ergebnisse zu einem

selbstgewählten Thema mit Bezug zu den Lehrinhalten präsentieren und diskutieren. Alternativ können die Studierenden auch aus einer Handvoll vorausgewählter Themen wählen.

Zusätzlich zu den Präsentationen muss am Ende der Lehrveranstaltung eine kurze Seminararbeit über das gewählte Thema eingereicht werden. Neben der Vermittlung von Kenntnissen über die Digitalisierung im Bahnbereich haben die Studierenden die Möglichkeit, ihre Fähigkeiten hinsichtlich des Präsentierens vor einer Gruppe und des wissenschaftlichen Schreibens zu verbessern. Sowohl die Präsentation als auch die Seminararbeit fließen in die Endnote ein.

3.5 Übersicht über die ingenieurwissenschaftlichen Module des Wahlpflichtbereiches zum Masterstudiengang Wirtschaftsingenieurwesen Fachrichtung Maschinenbau: Fahrzeugtechnik und Transport

	Dozenten	Modul	C P	V	Ü/ L	ΣS WS	Somm er/
	Schleifenbaum	Additive Fertigungsverfahren	6	2	2	4	Winter w
	Itskov	Additive Fertigungsverialiten Advanced Finite Element Methods for Engineers	5	2	2	4	W
	N.N./komm. Hopmann	Agiles Management in Technologie und Organisation	5	2	2	4	s
	Pischinger	Akustik mobiler Antriebssysteme	5	2	2	4	s
	Häfner	Anwendungen der Lasertechnik	6	2	2	4	s
	Eckstein	Automated and Connected Driving Challenges - Course	4	0	2	2	w
	Lampe	Automated and Connected Driving Challenges – Research Project	5	0	1	1	S
	Eckstein	Automated Driving	5	2	1	3	S
	Bobzin / Bagcivan	Beschichtungstechnik für Mobilitätsanwendungen	2	0	1	1	s
	Corves	Bewegungstechnik	6	2	2	4	W
	Schindler	Digitalization in Rail Vehicle Technology	3	2	0	2	S
	Jacobs	Dynamik und Energieeffizienz in der Schwerlastantriebstechnik	6	2	2	4	S
	Nießen / Jacobs J.	Eisenbahnsicherungstechnik I	3	1	1	2	W
	Corves	Elektromechanische Antriebstechnik	5	2	2	4	S
	Andert	Elektronik in mobilen Antrieben	5	2	1	3	W
	Nietsch	Ergonomie und Mensch-Maschine-Systeme	3	2	1	3	S
	Schröder	Fahrzeug- und Windradaerodynamik	5	3	1	4	S
	Schröder	Fatigue Design of Lightweight Structures	5	2	2	4	S
	Bergs	Fertigungstechnik I	4	2	1	3	W
	Reisgen	Fügetechnik IV – Grundlagen und Verfahren der Klebtechnik	6	2	2	4	W
	Trimpe	Fundamentals of Machine Learning	6	2	2	4	W
	Brecher / Bergs	Getriebe- und Verzahnungstechnik	6	2	2	4	W
	Pischinger / Rößler	Grundlagen des Patent und Gebrauchsmusterrechts	5	2	2	4	W
übergreifender Wahlpflicht-	Holly	Grundlagen und Ausführungen optischer Systeme	6	2	2	4	s
bereich	Stolten	Grundlagen und Technik der Brennstoffzellen	5	2	2	4	W
	Bobzin	Grundlagen und Verfahren der Löttechnik	6	2	2	4	W
	Bergheim / Fiedler / Winkler	Hardware-in-the-Loop für mobile Antriebe	3	0	2	2	W
	Deutkens / Heimes Schmitt	Herstellung elektrischer Energiespeicher Industrial Intelligence Interlaced Quality Management (iQM)	6	2	2	4	S W
	Schuh / Stich	Industrielle Logistik	5	2	1	3	014
	Schmitt	Industrielle Logistik Industrielle Montagesysteme	6	2	2	4	SW
	Eckstein / Baake	Industrielle Nutzfahrzeugentwicklung	5	2	1	3	S SW
	Ecroteiii / Baare	Industrieller Entwicklungsprozess von PKW-				3	SW
	Eckstein / Schulte	Antrieben Internationales Patent-, Marken und	5	2	2	4	W
	Pischinger / Rößler	Geschmacksmusterrecht Konstruktion fluidtechnischer Maschinen und	5	2	2	4	S
	Schmitz / Kunze	Geräte	3	1	1	2	W
	Löwer / Böddeker	Kooperative Produktentwicklung in der Fahrzeugtechnik	6	1	3	4	S
	Eckstein	Kraftfahrlabor	6	0	4	4	SW
	Viehöfer Eckstein	Vehicle Acoustics Krafträder	5	2	2	4	SW
	Hopmann	Krattrader Kunststoffverarbeitung I	4	2	1	3	S W
	Noll	Lasermesstechnik	6	2	2	4	
	N.N./komm. Hopmann	Lern- und Arbeitsverhalten in einer digitalisierten Gesellschaft	4	1	2	3	SW W
	Schelenz	Maschinenakustik und dynamische Ursachen	6	2	2	4	
	Markert	Mechanics of Forming Process	5	2	2	4	S
	iviarkert		3			4	W
	Abel	Modellprädikative Regelung energetischer Systeme	5	2	2	4	S
-	Müller R.	Montage und Inbetriebnahme von Kraftfahrzeugen	5	2	1	3	S
	Zweigel	Navigation und Sensorfusion in der Regelungstechnik	4	2	1	3	w

	Dozenten	Modul	C P	V	Ü/ L	ΣS WS	Somm er/ Winter
	Bobzin	Oberflächentechnik Teil 1	3	1	1	2	S
	Neises	Powertrain Calibration: Propulsion Systems	5	2	2	4	W
	Schindler	Produktentwicklung im Schienenfahrzeugbau	4	2	1	3	W
	Schuh	Produktion elektrischer Antriebe	3	1	1	2	S
	Schuh	Produktionsmanagement I	4	2	1	3	W
	Emonts	Produktionssysteme zur Herstellung von Leichtbaukomponenten aus Faserverbundwerkstoffen und Multimaterialsystemen	6	2	2	4	w
	Reusch	Qualität und Recht	2	1	1	2	W
	Schenk	Qualitätsmanagement in praktischer Anwendung	6	2	2	4	W
	Schenk	Qualitätsmanagement in der praktischen Anwendung	2	1	0	1	sw
	Bertsch	Reduktion von Verkehrslärm	4	2	1	3	s
	Baake	Seminar zur industriellen Nutzfahrzeug- Entwicklung	2	1	0	1	w
	Steinberger & Gastdozenten	Serienentwicklung von Triebsträngen für "On- Road" Nutzfahrzeuge	4	2	1	3	w
	Pischinger	Serienentwicklung von Getrieben für Pkw und leichte Nfz	5	2	1	3	s
	Schmitz / Stammen	Servohydraulik – geregelte hydraulische Antriebe	6	2	2	4	S
	Mertens	Simulation ereignisdiskreter Systeme	6	2	2	4	W
	Murrenhoff / Stammen	Simulation fluidtechnischer Systeme	6	2	2	4	S
	Andert / Richenhagen	Software in mobilen Antrieben	5	2	1	3	s
	Schröder	Sonderprobleme der Strömungsmechanik	3	2	0	2	W
	Eckstein	Strategien in der KFZ-Industrie	4	2	1	3	w
	Preisler	Structural Health Monitoring	5	2	2	4	s
	Arras / Starlinger	Strukturintegrität von Schienenfahrzeugen	3	1	0	1	S
	Schwalm	Systembewertung Kraftfahrzeug	5	2	1	3	w
	Flemisch	Systemergonomie	6	2	2	4	w
	Schuh	Technische Investitionsplanung	6	1	3	4	s
	Jacobs	Tribologie	6	2	2	4	w
	Eckstein / Möhler	Ursachenanalyse bei KFZ-Unfällen	5	2	1	3	s
	Pischinger	Verbrennungskraftmaschinen: Thermodynamik und Emissionen	6	2	2	4	sw
	Bobzin	Verfahren der Oberflächentechnik	6	2	2	4	w
	Schröder / Schelenz / Jacobs	Windenergie	5	2	1	3	w
	Eckstein	Fahrzeugtechnik I – Längsdynamik*	6	2	2	4	w
Module aus dem	Eckstein	Fahrzeugtechnik II – Querdynamik und Vertikaldynamik*	6	2	2	4	s
Pflicht- und	Schmitz	Mobile Arbeitsmaschinen	5	2	2	4	w
Wahlpflichtbereich des Berufsfeldes	Reisgen	Fügetechnik I – Grundlagen	6	2	2	4	s
Verkehrstechnik –	Schönhuber	Grundlagen der Fördertechnik	3	1	1	2	s
Fahrzeugtechnik	Schindler	Grundlagen der Schienenfahrzeugtechnik**	6	2	2	4	s
des Bachelor-	Pischinger	Grundlagen mobiler Antriebe	4	2	1	3	w
studiengangs Maschinenbau	Jacobs	Grundlagen der Produktentwicklung	6	2	3	5	w
Wasoninenbau	Corves	Machine Dynamics for Rigid Systems	6	2	2	4	S
	Eckstein / Schindler	Mechatronische Systeme in der Fahrzeugtechnik	6	2	2	4	S
	Eckstein / Pischinger	Alternative und elektrifizierte Fahrzeugantriebe	5	2	1	3	S
	Schindler	Angewandte Schienenfahrzeugtechnik	6	2	2	4	W
Module aus dem	Sauer	Batteriespeichertechnik	5	3	0	3	S
Pflichtbereich der	Eckstein	Fahrzeugtechnik III – Systeme und Sicherheit	5	2	1	3	W
jeweils anderen	Schmitz	Fluidtechnik – Systeme und Komponenten	6	2	2	4	w
Vertiefungs- richtungen des	Hameyer	Grundlagen Elektrischer Maschinen	4	2	1	3	S
Masterstudien-	Schindler	Schwingungsdynamik von Schienenfahrzeugen	6	2	2	4	S
gangs	Schindler	Spurführungstechnik	6	2	2	4	w w
Fahrzeugtechnik und Transport	Urban	Strukturentwurf von Kraftfahrzeugen	5	2	1	3	
una manapon		Verbrennungskraftmaschinen: Konstruktion und			<u> </u>	3	S
	Pischinger	Mechanik	6	2	2	4	S

^{*}Nachholpflicht im Rahmen der Zusammensetzung der Wahlpflichtmodule bei Vertiefung I – Straßenfahrzeugtechnik, wenn dieses Modul bis dato nicht belegt wurde.

** Nachholpflicht im Rahmen der Zusammenstellung der Wahlpflichtmodule bei Vertiefung II – Schienenfahrzeugtechnik, wenn dieses Modul bis dato nicht belegt wurde.

 $\textbf{Legende: CP} = \textbf{Credit Points} \quad \textbf{V} = \textbf{Vorlesung} \quad \ddot{\textbf{U}}/\textbf{L} = \ddot{\textbf{U}} \\ \textbf{bung}/\textbf{Labor} \quad \sum \textbf{SWS} = \textbf{Summe Semesterwochenstunden} \\ \textbf{V} = \textbf{Vorlesung} \quad \ddot{\textbf{U}}/\textbf{L} = \ddot{\textbf{U}} \\ \textbf{V} = \textbf{V} \\ \textbf{V} = \textbf$

In Anlehnung an Quelle: (24.03.2023) https://www.maschinenbau.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaablgtymf

4 Institutspräsentation

4.1 Wer und was ist das IFS?

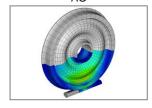
Die Schienenfahrzeugtechnik gehört zu den ältesten Lehrgebieten der RWTH Aachen. Wenige Jahre nach der Gründung der RWTH im Jahr 1870 wurden bereits Themen der Schienenfahrzeuge im Rahmen der allgemeinen Vorlesungen behandelt, bis im Jahre 1966 schließlich unser Institut im Seffenter Weg gegründet wurde. Seit Beginn des Jahres 2016 heißen wir "Institut für Schienenfahrzeuge und Transportsysteme". Der neue Name soll verdeutlichen, dass wir uns der spurgeführten Verkehrstechnik im gesamten Transportsektor widmen.

Girls-Day in Kooperation mit dem Prüfcenter für Bahntechnik in Wegberg-Wildenrath

Zurzeit deutet alles auf eine Änderung des Verkehrsmarktes und einer spürbaren Belebung des Güterverkehrs hin: Die Problematik des Klimawandels und der Energieversorgung tragen dazu bei, dass der Schienenverkehr durch seine systembedingte Energieeffizienz zu einer attraktiven Alternative des Straßenverkehrs heranwächst. Interessante Projekte, wie beispielsweise die Optimierung der Güterverteilung oder die Erforschung erweiterter Einsatzmöglichkeiten des europäischen Satellitennavigationssystems GALILEO im Schienenfahrzeugbereich, bestimmen die aktuelle Forschung.

Versuche mit dem CargoMover (Versuchsträger für neue Komponenten und Verfahren)

Wir bieten die Möglichkeit die theoretischen Grundlagen der Schienenfahrzeugtechnik kennen zu lernen. Besonders wichtig ist uns allerdings nicht nur das Angebot einer guten theoretischen Ausbildung, sondern vor allem der praktische Bezug. Wir möchten, dass unsere Studierenden ihre gewonnenen theoretischen Kenntnisse ausprobieren können: An Prüfständen, auf dem Messgleis in unserer Versuchshalle, auf unserem DB-Anschlussgleis - eine einmalige Einrichtung in der deutschen Hochschullandschaft - oder im Siemens-Prüfcenter für Schienenfahrzeuge in Wegberg-Wildenrath, mit dem das IFS langjährige Kontakte pflegt. Exkursionen werden, als weitere Möglichkeit praktische Einblicke in die vom IFS angebotenen Lehrgebiete zu erhalten, häufig veranstaltet, wie beispielsweise zu dem Bochumer Verein, zu dem von der RWE AG betriebenen "Tagebau Hambach", oder ein Besuch der Schaltzentrale der "Hamburger Hochbahn AG".



Exkursion Schienenfahrzeuge zum Bochumer Verein Verkehrstechnik GmbH

Nach Amtsantritt des jetzigen Lehrstuhlinhabers Herrn Prof. Christian Schindler, wurden die Forschungsgebiete des IFS um den Bereich Strukturintegrität erweitert. Innerhalb dieses Bereichs werden Strukturen aus den Bereichen Schienenfahrzeug- und Fördertechnik mittels Finite-Elemente-Analyse auf ihre Festigkeit hin untersucht.

Exkursion Fördertechnik zum Tagebau Hambach RWE AG

Untersuchung einer Struktur mittels Finite-Elemente-Analyse

4.2 Forschungsschwerpunkte des IFS

Gegenwärtig arbeitet das IFS an folgenden Forschungsthemen:

Assistenz, Automatisierung und Autonomisierung:

Technische Aufrüstung und Modifikation des Erprobungsträgerfahrzeugs IFS 1 als ein flexibler Versuchsträger für Forschungsvorhaben

Erforschung von erweiterten Einsatzmöglichkeiten von GALILEO im Schienenfahrzeugbereich, z.B. Entwicklung eines Ortungs-systems für das Rangieren von Güterzügen

Innovative Systeme zur Optimierung der Güterverteilung auf der Schiene, z.B. wurde in dem Projekt "Flex-Cargo-Rail" ein Fahrzeugsystem mit elektrisch angetriebenen Güterwagen für den Einzelwagenverkehr entwickelt

Entwicklung neuer und Optimierung bestehender Leichtbaukonstruktionen, u.a. mittels Finite-Elemente-Simulationen

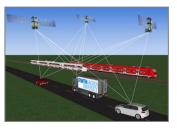
Komponenten- und Systementwicklung mit dem Schwerpunkt Fahrwerkstechnik:

Erforschung innovativer Drehgestelle und mechatronischer Fahrwerke, u.a. mittels MKS-Simulation

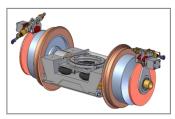
Erforschung der Rad-Schiene-Interaktion und Verbesserung der Bremstechnik von Schienenfahrzeugen mittels innovativer Gleitschutzsysteme zur Verminderung von Verschleiß, Lärm und Kosten und zur Erhöhung der Sicherheit gegen Entgleisen

Energieeffizienz:

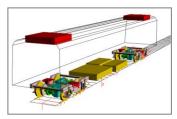
Entwicklung alternativer Antriebskonzepte, Betriebsstrategien und Energieflussmanagementsysteme

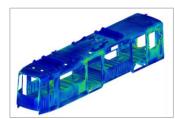

Sonstiges:

Entwicklung intelligenter Informationssysteme zur Erhöhung der Sicherheit im Regionalbahnverkehr


Begutachtung von Schadensereignissen im Bahnbetrieb

Rollprüfstand für Untersuchung zur Sicherheit gegen Entgleisung


Szenario des GALILEO-Projektes Quelle: IRT Aachen


Entwurf eines mechatronischen Hybrid-Fahrwerks

Erprobungsträgerfahrzeug IFS 1 "CargoMover"

Fahrwerksuntersuchung mittels MKS-Simulation "SimPack"

Festigkeitsnachweis von Strukturen mittels Finite-Elemente-Simulation

4.3 Direkt nachgefragt!

Warum studierst Du Schienenfahrzeugtechnik und wie beurteilst Du die Betreuung der Studierenden am IFS?

Tim, 24:

"Obwohl ich das Berufsfeld Produktentwicklung vertiefe, habe ich mich für einen HiWi Job am IFS entschieden, weil ich die entspannte und familiäre Arbeitsumgebung sehr schätze. Des Weiteren kann man am IFS Einblicke in die verschiedensten Bereiche eines Ingenieurs bekommen."

Johannes, 23:

"Seit Kindheitstagen bin ich von Schienenfahrzeugen begeistert und da diese in Zukunft einen immer größeren Stellenwert einnehmen werden, habe ich mich auch perspektivisch für diese Vertiefung entschieden. Die Lehrveranstaltungen sind sehr interessant, da diese sowohl theoretisch als auch praxisorientiert sind. Zusätzlich arbeite ich als HiWi am Institut und finde die Atmosphäre innerhalb als auch außerhalb der Arbeitszeiten als sehr angenehm und gemeinschaftlich."

Elaine, 25:

"Ich sehe im Rahmen einer nachhaltigen Mobilität für die Bahnindustrie ein riesiges Wachstumspotential. Sowohl im Personennahverkehr als auch im Güterverkehr wird diese eine wichtige Rolle einnehmen. Das IFS stellt für mich eines der interessantesten Institute an der RWTH dar, da dort diesen Potentialen nachgegangen wird und die Studierenden gleichzeitig sehr gut betreut werden."

Paul, 24:

"Was mir am IFS am besten gefällt, ist die ungezwungene und hilfsbereite Atmosphäre. Man interessiert sich füreinander, unterstützt sich gegenseitig, und erhält so auch automatisch einen Einblick in viele interessante Forschungsfelder. Bei der Arbeit mit den anderen Studenten als auch mit den Mitarbeitern ist der Umgang dabei locker, aber dennoch produktiv. Idelae Voraussetzungen, um viel Neues dazu zu lernen!"

4.4 Kontaktadressen

Lehrstuhl und Institut für Schienenfahrzeuge und Transportsysteme

Seffenter Weg 8 // 52074 Aachen

Telefon: 0241 – 80 25563

Email sekretariat@ifs.rwth-aachen.de

Homepage: www.ifs.rwth-aachen.de

Institutsleitung

Univ.-Prof. Dr.-Ing. Christian Schindler
1.OG, Raum 101, Anmeldung in Raum 102
Telefon: 0241 – 80 25563 (Sekretariat)
E-Mail: schindler@ifs.rwth-aachen.de

Eine persönliche Studienberatung erhalten Sie im IFS für den Schwerpunkt Schienenfahrzeugtechnik:

Thi Ngoc Anh Hoang, M.Sc.

EG, Raum 011

Telefon: 0241 – 80 25580

Email: anh.hoang@ifs.rwth-aachen.de

Christian Frowein, M.Sc.

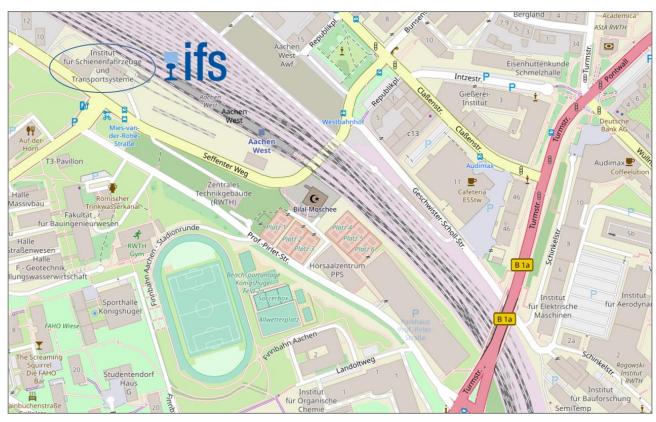
1.OG, Raum 107

Telefon: 0241 - 80 25575

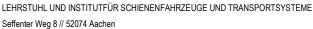
Email: christian.frowein@ifs.rwth-aachen.de

4.5 Anfahrtsbeschreibung zum IFS

GPS: 50°46'52" N 06°04'02" E


Bahnstation: Aachen-West

Busstation: Linien 3A/B, 33 und 73, Haltestelle "Mies-v.-d.-Rohe-Straße"


PKW: Vom Autobahnkreuz Aachen fahren Sie auf die A4 in Richtung Heerlen. An der

Ausfahrt "Aachen-Laurensberg" fahren Sie ab und folgen der Schnellstraße in Richtung "Uniklinikum / RWTH-Hörn". An der Ausfahrt "RWTH-Hörn" fahren Sie in Richtung RWTH-Hörn auf den "Seffenter Weg". Das Institut liegt in Fahrtrichtung auf

der linken Straßenseite.

© OpenStreetMap 20.07.2018

Telefon 0241 / 80 - 25563

E-Mail sekretariat@ifs.rwth-aachen.de Homepage www.ifs.rwth-aachen.de

